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I present a minor, but important correction to Kleiser and Schu-
mann’s influence-matrix solution for numericatl simulation of 3D
time-dependent incompressible flow between no-slip plane bound-
aries (L. Kleiser, and U. Schumann, in Proc. 3rd GAMM Conf. Numer-
ical Methods in Fluid Mechanics, edited by E. H. Hirschel, Vieweg,
Braunschweig, 1980, p. 165). The solution technique ! present is,
for the most part, identical to Kleiser and Schumann’s, the only
noteworthy difference being my treatment of the truncation (or
“tau”} errors. Though this improvemeant appears to be but a slight
modification to their original algorithm, the error encountered when
attempting to satisfy the incompressibility constraint is reduced
dramatically (by a factor of 10", producing velocity fields which are

divergence-free to within machine precision. & 1995 Academic Press, tne.

i. INTRODUCTION

In 1980 Kleiser and Schumann presented a numerical spectral
solution technique for the Navier—Stokes equations in a
cartesian geometry hounded by two parallel, no-slip planes [ 1]
Their method incorporsies Fourier expansions in directions
parallel to the no-slip boundaries and a Chebyshev-**tau™ dis-
cretization |2, 3] in the perpendicular direction. In order Lo
satisfy the no-slip condition at the bounding planes, Kleiser
and Schumann use the “‘influence matrix™ [4] (also referred
to as the “‘capacittance matrix™") and are careful to correct the
truncation-crrors (also called *“tau” -errors) which contaminate
all of the mode-equations for the Chebyshev coeflictents.

A review and generalization of Kleiser and Schumann’s in-
ffuence matrix method to non-periodic geometries already exists
5] and | refer interested readers to that excellent work. My
intent here is neither to review nor to generalize the influence
matrix method further, but rather only to point out a subtle
error present in Kleiser and Schumann’s original formulation
so that readers of Kleiser and Schumann’s work can avoid
introducing this easily overlooked mistake into their own com-
puter programs

[ begin by bricfly outlining the important steps in the influ-
ence-malrix technique appiicd to a coupled system of 2 one-
dimensional Helmholtz equations (as the system appears in the

numerical solution to the Navier—Stokes equations), Next, |
present the form of the truncation-errors in the Chebyshev-
“‘tau’’ approximation Lo this system. [ then detail the correction
required to eliminate the truncation errors, carefully pointing
out the subtie mistake made by Kleiser and Schumann. Al-
though much of the content of this brief review already appears
in a slightly different form in [1], the re-examination here is
required Lo build the necessary framewaork with which to discuss
the proper trealment of the truncation errors. § end with exam-
ple-calculations of 3D Rayleigh—-Bénard convection wherein
the “‘tau’’ corrections are implemented: (1) with the original
Kieiser—Schumann solution and (2} according to the present
formulation. The magnitude of the normalized divergence in the
resulting velocity fields is 7 X 107 and 7 X 107" respectively.

2. COUPLED HELMHOLTZ EQUATIONS

When numerically integrating the incompressible Navier—
Stokes equations between no-slip boundaries, the standard
primitive-variable sofution-technique requires solving a cou-
pled system of 11D Helmholtz equations of the form

(D= MWW =DP + r, ().2)
(D= kP =1, (1.b)
W(£1)=0 (1.c)
DW(+1) = 0. (1.d)

The solution variables W and P and the right-hand-sides ry and
ry are functions of z; D represents the derivative 8/dz; A and
k* arc conslants, (See the appendix for a derivation of this
system.) A stratghtforward solution to this system might be to
solve (1.b) to obtain P, then compuie DP in order to solve (].a)
for W. Note, however, that this solution can proceed only if
one knows the correct boundary conditions for P which will
result in (1.c} and (1.d). Because the correct boundary condi-
tions for P are unknown at the outset, one is faced with the
following three options: (1) employ an iterative method which
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reqjuires an initial guess at P's boundary conditions; (2) elimi-
nate P from (1.a) and {1.b) and solve the resulting fourth-order
equation for W; or (3) make use of the linearity of the system
to directly solve (l.a) and (1.b) simultancously, i.e., employ
the influence-matrix technique. Method 3 is the one chosen by
Kleiser and Schumann for this problem and the only one I
discuss here. The method begins by solving the related
problems:

(D*— WW=DP+r, WED)=0,

(D = KHP = r, P(xD) =1, (2)
(D' — W, =DP,, W,(x1)=0,
(D — kHP. =0, PA+1}=1 P(~-D=0; 3
(D= OW_=DP_, W.(=1)=0,
(D* = k)P =9, P(+HD)=0 P(-D=1. &

The final solution (W, P) is then constructed from a linear
combination of these solutions:

(Gl () o

The constants g and & are chosen such that (1.d} is satisfied
{(1.c) holds for any choice of @ and b); this involves solving
the 2 X 2 “‘influence’’ matrix problem

(DW+(+1) DWﬁ(+l))(a)_ (DW(H)) 6
pw.(~1) pwi-1/\s)]  \Dw-1)/ ©

hence, the method’s name,
Note that (3) and (4) are symmetric counterparts,

Wiz)=—Wi(~2), P.=+P(~z) {7

therefore, once (3) is solved, one need not solve (4). Also

note that it is equally valid to employ the alternate pressure
boundary conditions

DP(+1)=0, DP(—-1)=0,

pP(+Ly=1, DP.(—1)=0,

DP_(+1)=0, DP_(—1)= L.

(8.a)
8.b)
(8.c)
Experience shows that boundary conditions (8) produce slightly
more accurate numerical solutions than the pressure boundary

conditions in (2)—(4), Therefore, all of the solutions presented
here are actually computed using (8).

3. CHEBYSHEV-““TAU”’ APPROXIMATION

When solving Eq. (1) on a digital computer, the smooth (i.e.,
C.) nature of the equations is potentially lost as a result of
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the finite memory of the machine. In the Chebyshev-*‘taun’’
approximation, this is manifested in truncation of the Cheby-
shev representations for the variables Wand P, e.g.,

N
W(z) = 2} WTi(z2),

where T;(z) is the jth-order Chebyshev pelynomial [6] and N is
finite. Naively, one might consider the “‘discrete’” Chebyshev-
““tau’” representation of Eq. (1) to be

W& — AW, = PO+ } _ 9-2)
J=WN-D
P;Z) - kZPI = rzj (9b)
N
Y (1w, =0 (9.c)
=0
N
DW=, (9.d}
i=0

where

N
Du(z) = 2, uTi(2).
=

Equations (9.a) and (9.b) are obtained by taking the inner prod-
ucts of (1.a) and (1.b} with 7;(z) with respect to the weight
function (1 — z%)~". Equations (9.c) and (9.d) are derived from
(l.c) and (1.d) using the Chebyshev boundary values
T(x1) = (1), DL(x1)= (="~

Note that the two highest-mode equations (j = N — 1, N) are
(arbitrarily) disregarded in lieu of equations for the boundary
conditions (9.c) and (9.d). This replacement of the highest-
mode equations with boundary conditions is precisely the *‘tan™
approximation [2, 3].

To understand why (9) is only a ‘‘naive’” attempt at discretiz-
ing the continuous systern Eq. (1), one must appreciate the
nature of the coupling between W and P and the repercussions
this coupling has on the propagation of truncation errors from
the (neglected) two highest-mode equations for W ((5.a) with
f =N — 1, N} to all of the mode-equations for P (9.b).

To illustrate, let us denote the error incurred by neglecting
(9.a) for the two highest modes o;/2j (j = N — 1, N); ie.,

WO — AW, = P 4 ry, = %’ =N, (9.2")

where



262

g;

Tn-i Ty
)= R 1
(21) (Oa 09 Os ) 0! Os 09 O, 2(N _ 1)’ 2N) ( 0)

The 2j-denominator is included to simplify subsequent equa-
tions. Using the following relations for truncated Chebyshev
expansions

N
cud = > wi(jP—k)—uP =0, u@ =0
j+=kev§n
N
cul) = Z w2j - ul =0, ull =2Nu,
Frk o

(¢, = 1 + 8,,), we can evaluate these errors:

Oy = 2N = Dlryo + AWy £ 2NPy) (1)

oy = 2N(riw + AW). (11.by

Furthermore, because (1.a) must be differentiated to derive
{1.b) (sce the Appendix), we must likewise compute the discrete
derivative of (9.a') to obtain the correct Chebyshev-*‘tau”
discretization of (1.b):

13
szbkzPF"zf-"(%') L J=E(N-2), 9D

where

o\ _ (G
2] 2 s Ny Un-1y

Note that the errors in the two highest modes of (9.a') propagate
to all of the modes of (9.b") through (¢;/2))®. To obtain (12),
the following Chebyshev recursion relation is useful:

* Y On—t1; On, Oy—1, Oy, 0)- (12)

cul = ul), +2(j + iy,

Therefore, the correct Chebyshev-“‘tau” discretization of Eq,
(1) includes (9.a"), (9.b"), (9.c), and (9.d). I discuss the solution
to this system in the next section.

4. CORRECTING THE “TAU" ERRORS

We seek a solution to the discrete system, (9.a’) and (9.b"),
subject to boundary conditions (9.¢) and (9.d). We employ the
linearity of the system and consider separately the following
two sets of equations:

J. WERNE

W}gz; _ A—H_’,- - })‘I(IJ + 7y (13.a)
o j=M=2)
Pj- — k Pf = rzj (]3b)
W(x1) = DW(x1} = 0,
W‘gz) — AW, = 1’5}(1) (14.a)
~ _ JEW=-2)
Pj-z) — kP = U (14.5)

W(+1) = DW(x1) = 0,

Equation (13) is identical to the *‘naive’” discretization (9); Eq.
(14) embodies the *‘tau-correction’” required to remove the
propagated truncation errors. Each of these sets of equations
is solved by the influence-matrix technique outlined in Section
2. The final solution is

where 3 Is a constant (€1} whose magnitude is determined by
the size of the correction needed to remove the ‘‘tau’” errors,
To compute 8, we must evaluate the error in the two highest
modes of (9.a"). From (9.a"), {(13.a), and (14.a), these errors
must satisfy

o =T+ BF, j=(N—- LN (15)
Also, from (12}, (9.b'), (13.b), and {14.b) we have
N\ ()
(5’%) £ a6)
2j Loy

Combining (12), (15), and (16} we obtain 83,

B=og= '

which, as we see, is different for the even and odd modes. Qur
final solution is

Ty .
W, Jjeven
—_ 1— ﬁ'N
Wi=W+4 _
L7 T S .
W, Jjodd
1 — &y
Oy
Al P;, jeven
— I — &y,
Pi=F+ —
Oy ~
F;,  jodd,
1— &y
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where ©; and &; are evaluated from (13.a) and (14.a) according
w {11).

Note that this solution is a bit misleading because we initially
assumed B to be constant, while we concluded with different
values of 3 for the even and odd modes. This tums out to be
consistent only because the solution to (14) decouples even
and odd modes, In other words, if we re-examine the analysis,
considering even- and odd-mode corrections separately, the
result will be the same as above.

This completes our review of Kleiser and Schumann’s numeri-
cal solution to Bq. (1). The careful reader of Kleiser and Schuo-
mann will note, however, that the two solutions (Kleiser and
Schumann's and the one presented here) are nor identical. Spe-
cifically, Kleiser and Schumann do not employ DW(* 1) = O as
boundary conditions for the “‘tau’” correction. Instead, they use
P(=1) = 0. The explanation for their choosing these boundary
conditions lies in the fact that the influence-matrix method, as
outlined in Section 2, prouvides the boundary conditions required
for the pressure, namely P(-+1) = a and P(—1) = b (using the
notation of Section 2). Therefore, (the argument continues) once
{13.a) and (13.b) have been solved, the correct boundary condi-
tions for P are known and one should not alter these boundary
conditions further when computing the solution 7. Hence, one
should choose (= 1) = 0. The flaw in this reasoning is that the
boundary conditions for P (obtained when (13.a) and (13.b) are
solved by the influence-matrix technique} are those required to
enforce DW(x1) = 0, not DW{x1) = 0. Therefore, the final
solution W (obtained using P(x1) = 0), will not have
DW(£1) = 0 and, as a result, will have a non-zero divergence.
This explains why Kleiser and Schumann’s solutions satisfy V -
v = (to only a few significant digits [1] while solutions obtained
using DW(x1) = 0 are exactly divergence-free (see below).

I should point out that imposing the correct boundary condi-
tion DW(x1) = 0 requires ne more computational effort than
the incorrect boundary condition A(=1) = 0. The reason for
this is that the solution (W, P,) (see Section 2), once computed
to solve (13), can be reused for (14).

5. RAYLEIGH-BENARD EXAMPLE

To demonstrate the solution outlined in this paper, Rayleigh—
Bénard convection between horizontal plates held at fixed tem-
peratures has been simulated. The domain-size is 4 X 4 X 1 and
the flow is periodic in the horizental directions. The Rayleigh
number is 6.4 X 10° and the Prandtl number is 1. See Table ]
for more details concerning the parameters used to perform the
calculation. Discussion of the physical processes revealed by
the simulations will appear elsewhere [7]; here I concentrate
only on the magnitude of |V - v,

Figure 1 shows the time-evolution for the maximum value
of |V - v|, normalized by the maximum value of [3,W]. Two
different treatments of the truncation errors are used: (1) the
Kleiser—Schumann solution using B(=1) = 0; (2) the present
formulation using DW(*1) = 0, where v is the fluid velocity,

263

TABLE I

Parameters Used to Compute the Numerical Solutions

bx &t U
Ra o Geometry N X N, XN, I s
6.4 X 1 1 4xX4x1 96 X 96 X 33 1.7 0.25

Note, Raand o are the Rayleigh and Prandtl numbers used for the simulations.
Geometry tefers to the dimensions of the physical domain in units of L, the
depih of the fluid layer. N, X ¥, X N, is the number of spectral modes used
in the x X y X z-directions; Fourier modes are used to represent the horizontal
directions (x, y) while Chebyshev polynomials form the basis set for the vertical
direction z; dx/l, represents the maximum value of the ratio of the grid spacing
to the dissipative (or Kolmogorov) length-scale for the velocity fluctuations;
values of order | demonstrate adequate spatial resolution of the small-scale
Auctuations; &t {//dx is the Courant-Friedrichs—Lewy (CFL) number for each
substep used for the Runge—Kutta scheme; {/ is the maximum velocity at any
given time,

W is the vertical component of v, and z is the vertical coordinate.
As is evident from the figure, the error in ¥+ v = 0 for the
Kleiser—Schumann solution is =7 X 107 (or roughly 1%)
while that for the present implementation is only =7 X 107",
Therefore, the correction presented in this paper improves the
Kleiser—Schumann solution by 11 orders of magnitude and
produces velogity fields which are divergence-free to within
machine round-off. {Calculations were performed using CRAY
Y-MP 64-bit arithmetic.}

6. CONCLUSION AND SUMMARY

A subtle error in Kleiser and Schumann’s influence-matrix
solution to incompressible flow between plane no-slip bound-
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FIG. 1. Normalized divergence versus time, Curve {a) depicts the time-
evolution of the maximum value of [V - v| divided by the maximum value of
|a.W| for Boussinesq convection computed using the Kleiser—Schumann solo-
tion, Curve (h) shows the same quantity computed using the present solution,
Because a Boussinesq fluid obeys V.v = 0, the two curves represent the
numerical errors encountered in attempting to enforce incompressibility. Note
that the vertical axis is greatly expanded near the origin so that the small
(round-off} errors in the present solution may be viewed.
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aries is identified. A minor modification to their treatment of
the truncation errors is demonstrated (via simulations of 3D
Rayleigh—Bénard convection) which reduces the error in satis~
fying the incompressibility constraint (V-v = 0) by a factor
of 10", i.e., to within machine precision. The modified solution
requires no more computation than Kleiser and Schumann’s
original implementation.

APPENDIX

The Navier—Stokes equations for a Boussinesq (i.e., incom-
pressible) fluid [8] are

av+twXv=gVv—-VP+ UT_E T (17.a)
4T+ v-VT=VT (17.b)
V.v=0, (17.¢)

where v, w, T, and P are the nondimensional fluid velocity,
vorticity, temperature, and pressure head. & = v/« is the Prandtl
number, where » is the kinematic viscosity and x is the thermal
diffusivity. We seek solutions to Eq. (17) between horizontal
rigid planes positioned a distance L apart. Ra = gaALY(2x) is
the Rayleigh number, where A is the temperature drop imposed
between the planes, g is the local acceleration due to gravity,
and e is the fluid’s thermal expansion coefficient. For no-
slip, fixed-temperature boundary conditions at z = X1 (z is
normalized by L/2), we have

T(x1) = F1 (18.a)
W= =0 (18.b)
DW(x1)=90. (18¢)

The last condition is a consequence of (18.b) and (17.c). T is
normalized by A/2.

When numerically integrating (17) forward in time, let us
follow [1] and treat the non-linear terms explicitly (i.e., use
values of @ X v and v+ VT at previous timesteps to extrapolate
to a future timestep) and the remaining linear terms implicitly
(i.e., include values of v, T, and P at the future timestep in the
algorithm to advance the field variables). The particular time-
stepping algorithm 1 use, aithough of this general ilk, is different
from that employed by Kleiser and Schumann. T use the mixed
implicit/explicit third-order Runge—Kutta scheme developed by
Spalart, Rogers, and Moser [9]. This scheme, although more
stable and more accurate than Kleiser and Schumann’s second-
order Crank—Nicolson/Adams—Bashforth scheme, requires no
more storage or computational effort. In addition, the basic
structure of the two schemes is identical.

The form of the implicit time-stepping algorithm for the
linear terms is obtained by replacing each term in (17) with
the time-discrete analogue of the latest time-level contribution
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for that term. Denoting time-levels by n — 2, n — I, n, n +
1, etc., we have

%tv”“ +f =gV —vprt 4+ J%g 7'z (19.)
ZTHH I L (19.b)
ot

V.y =0, (19.¢)

where -y is a constant which depends on the specific time-
stepping algorithm used and &t is the timestep; f* and s" include
all other terms in (19.a) and (19.b) which involve time-levels
n and earlier. Rewriting (19.a) and (19.b) and taking the diver-
gence of (19.a) (while making use of (19.c}), we have

Z_L n+l:VPﬂ+1_E n+]ﬂ+ﬁ i r
(V Uat) v o 16 i o (19.29
(w - ﬁ) Tr =g (19.6")
nt| L
LN VB R (e
o o 16

Furthermore, if the horizontal representation is Fourier. e.g.,
v = wz)e ™,
k

where k = (k,, k,, ) is the horizontal wave vector and x =
{x, y, z) is the position vector, (19) takes the form

(D} — Ty = st (20.2)
Pn+1 n
0 - wug = i, B L (20.b)
o o
n+1 '
0= wvyr = -, T L (20.c)
. o
P.lr-H 13
(0 — owpr = p L LR (20.d)
o 16
Pn+l . fn
(D k) —=—= (V ) +2prt oe
a a k 16

E =k-k, 7=k + /8, and A = k* + v/{(a8), The technique
required to solve this system begins by solving the linear Helm-
holtz equation for T (20.a) subject to boundary conditions
(18.a). Then, with the temperature at the future time known,
the “‘right-hand sides’” 1o (20.d) and (20.e) can be computed.
This results in a subsystem of the form:
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n+1
(D’ — Wt = + ru
PnH
(D= k) === rx

Witl(x 1) = DWit(=x1) = 0.

The solution to this subsystem can be obtained using the influ-
ence-matrix technique, which is the subject of the body of this
paper. Once this subsystem is solved, the right-hand sides to
{20.b) and (20.c) can be evaluated and those equations solved
for Uit and V§*'. The solution at later timesteps is obtained
by repeating the procedure.
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